Correction to:SK 1 for finite group rings: I

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group ${1, -1, i, -i}$ Cordial Labeling of sum of $C_n$ and $K_m$ for some $m$

Let G be a (p,q) graph and A be a group. We denote the order of an element $a in A $ by $o(a).$  Let $ f:V(G)rightarrow A$ be a function. For each edge $uv$ assign the label 1 if $(o(f(u)),o(f(v)))=1 $or $0$ otherwise. $f$ is called a group A Cordial labeling if $|v_f(a)-v_f(b)| leq 1$ and $|e_f(0)- e_f(1)|leq 1$, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labelled w...

متن کامل

The Auslander-Reiten Conjecture for Group Rings

This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...

متن کامل

group rings for communications

this is a survey of some recent applications of abstract algebra, and in particular group rings, to the `communications' areas.

متن کامل

On some subgroups of the multiplicative group of finite rings

Let S be a subset of Fq, the field of q elements and h ∈ Fq[x] a polynomial of degree d > 1 with no roots in S. Consider the group generated by the image of {x − s | s ∈ S} in the group of units of the ring Fq[x]/(h). In this paper we present a number of lower bounds for the size of this group. Our main motivation is an application to the recent polynomial time primality testing algorithm [AKS]...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones Mathematicae

سال: 1981

ISSN: 0020-9910,1432-1297

DOI: 10.1007/bf01393938